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A straightforward modification which reduces by half the computational cost of standard 
particle-in-cell algorithms for simulation of plasmas is described. The saving is obtained by 
integrating only the electrons through a number of time steps (sub-cycles) in order to resolve 
their evolution, while integrating the much slower ions only once per cycle, i.e., to match the 
time step of each species to their characteristic frequencies. A dispersion relation is derived 
which describes the numerical instabilities expected by sampling frequency arguments. 
Simulations support the broad features of the analytical results, viz., the maximum growth 
rate and domain of the instability, and its stabilization by the addition of weak damping. An 
implicit sub-cycling algorithm is suggested which may provide further saving while avoiding a 
limitation of implicit algorithms described elsewhere. 

1. INTRODUCTION 

There is increasing interest in simulation of plasma phenomena developing on time 
scales that are very slow compared to the electron plasma oscillation frequency. The 
prevalent particle-in-cell simulation algorithms require a very large number of time 
steps in such applications, often making them an expensive tool. Our purpose here is 
to show that one can exploit the difference in inertia of ions and electrons to devise 
an easy modification to standard PIC codes that allows a gain of almost a factor of 
two in the computing time of any electrostatic model. In an electromagnetic model, 
where the relative cost of the ions is less important, the gain is somewhat smaller but 
is as easily obtained. 

Unlike the implicit particle code algorithms [ 1, 21, which are intended to meet the 
same need, there is no limitation to wavelengths much larger than the Debye length, 
or to small field gradients, nor are high frequency electron waves eliminated. In fact, 
there exists a whole class of phenomena such as modelling of ion acoustic turbulence 
which requires the dynamics of both electrons and ions to be followed accurately. 

The basis of the algorithm is to use a standard leapfrog scheme for pushing both 
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electrons and ions, but the electron time step is a fraction of the ion time step. For 
each complete cycle of time integration, there is one cycle for the ions and several 
sub-cycles for the electrons. As the mass of ions makes them insensitive to high 
frequencies, one can use a larger time step for ions than electrons, which quickly 
makes the cost of pushing ions very low. We show, however, that frequency aliasing 
introduces numerical instabilities in some intervals of time step. The main purpose of 
this paper is to study these instabilities theoretically and numerically in order to 
determine the range of applicability of this algorithm and future schemes employing 
electron sub-cycling. We examine means to stabilize the algorithm. Examples of 
applications will be described elsewhere [3]. 

2. THE ALGORITHM 

As mentioned in the introduction, the basis of the algorithm is the fact that ions do 
not respond to the high frequency waves. This allows suppression of the high 
frequencies in the field seen by the ions and permits us to push them with a time-step 
larger than that used for electrons. We shall show that this can be done in a way that 
preserves centering in time. The ion time step Ati will be an integer multiple N of the 
electron time step At,. When N is odd or even, we find slightly different schemes. In 
the most natural one, N is odd. 

2.1 Odd N Scheme 

The scheme is illustrated in Fig. la. For clarity we assume that N = 3 and that the 
ion density is defined at integer time in terms of ion time steps @i,O, pi,, ,..., in Fig. 
la). The electron density is defined at integer time steps simultaneously with the ions, 
and at fractional time steps @e,1,3, pe,2,3 ,... in Fig. la). More generally, the ion 
density is known at time tn = ndt, while the electron density is known at time t,,,,, = 

FIG. 1. Odd and even versions of the proposed sub-cycling algorithm. (a) odd N scheme; (b) even N 
scheme; and (c) even N scheme. 



SUB-CYCLING IN PARTICLE SIMULATION 231 

(n/N) Ati = tit, (n = 0, 1, 2,...). Electrons are pushed from time nAti - MAt, to time 
ndt, + ikfdt,, where M = (N - 1)/2, assuming ion positions as defined at time ndt,. 
The electric field seen by the ions is then computed as a function of the electric field 
calculated from the intermediate positions of electrons. Ions are then advanced one 
time step and the cycle is repeated. Recalling that, for the leapfrog scheme, positions 
and velocities are defined with a lag of half a time step, it is easy to see that this 
scheme is centered. 

2.2 Even N Scheme 

The most direct extension to even N of the odd N case just described is illustrated 
in Fig. lb. Two inconvenient features appear immediately, however, on tracing 
through a complete cycle, which proceeds as follows: We begin with the electron 
positions known at time t,,, and the ions at time t,. The first electron sub-cycle is 
based on the electric field at time t,,,. To retain centering, this field presumably uses 
an average of pi,i and pi,0 which must be retained from earlier. The remaining 
electron subcycles proceed simply to time t,,, using pi,i . To obtain an electric field at 
time t, for integration of the ions, we use an approximation to the time average of p 
from t,,* to t,,,. In these time averages, the electron densities pe, ,,*, pe+3,2, etc. appear 
twice, used on successive cycles. This implies that a weight of f should be used on 
the electric field at times 12 - 4 and n + 4 when computing the electric field seen by 
the ions. In fact, this is also what one would have using the trapezoidal integration 
formula to compute the electric field seen by the ions by summing the field defined by 
the successive positions of electrons over an ion time step. 

Figure lc presents an alternative to the preceeding even N scheme. It avoids the 
two inconveniences mentioned, but at the expense of a time lag of half an electron 
time step, which means that ions and electrons are never known at the same time. 
This may be a problem for diagnostics purposes. Otherwise it can readily be seen that 
it is strictly equivalent to the odd N scheme. 

As we have found no advantages to offset the inconveniences found for even N, we 
shall use only odd values. A similar algorithm was considered by Dawson and co- 
workers [4]. 

2.3 Filter Choices 

The electric field seen by the ions is defined as a function of the electric field seen 
by the electrons. The most obvious function is a time average of this field. In prin- 
ciple, however, more sophisticated filters can be chosen. One has to be careful to use 
only finite impulse response filters (i.e., nonrecursive) in order to maintain time 
centering. In fact, with the number of data points available for filtering during one ion 
time step, we find that it is difficult to do much better than averaging unless the mass 
ratio is very large. Moreover, in the next section we shall see that the introduction of 
an arbitrary filter in the algorithm instead of a simplex average can induce a strong 
instability in the vicinity of wpeAti = 2n. 
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3. THEORETICAL ANALYSIS 

In this section we derive a dispersion relation which predicts instabilities when 
w,,dt, is near 7t, 27r, and other multiples. Approximate analytical solutions are found 
which adequately estimate the maximum growth rates. In the next section, numerical 
solutions of the dispersion relation are presented which describe the instabilities more 
completely and accurately for comparison with results of actual simulations. We need 
not include the effects of the spatial grid as we do not anticipate interactions between 
spatial and temporal discretization in these problems; such a generalization is 
straightforward with existing methods [5]. 

3.1 Derivation of the Dispersion Relation 

We assume iV = 2h4 + 1 is odd, and label ion time steps by n, and electron time 
steps by n’. As the electrons are integrated from step nN - M to nN + I’M, the electric 
field used is obtained from a charge density pi,n + pe,,, , i.e., the ion density at their 
nearest time tit,, plus the electron density at the current electron step n’. Then the 
ions are integrated using the field calculated from pi,, plus a filtered electron density 

Pi.n + 5 an’Pe,n’tnN~ 
n’= -,+f 

(1) 

where the filter coefficients are normalized, ,7J a,, = 1, and (normally) are symmetric, 
a -n, = a,,. 

In order to derive the dispersion relation, we must relate Fourier transforms of pi 
as perceived by the electrons, and the filtered pe as perceived by the ions. Our 
transform conventions are, for the ions 

pi(W) = Ati C pi,“eiw’n, 
n 

% 

RlAti dw 

Pi,, = -n,Afi xPitw) e+% 

(24 

WI 

where t, = nAti, and similarly for the electrons. From (2a) we find the periodicities 
pi(w + 2z/At,) = pi(o) and p,(w + 2x/A&) = p,(o). We Fourier transform all fields in 
space and suppress the argument k. 

The electric field used to integrate the electrons is given by the transformed Gauss’ 
law with source pe,“, + pi,“, where n is the integer closest to n’/ZV. Transforming in 
time, 

ikE,(o) -p,(o) = At, 2 pi,neiwn’Ate 
n’ 

+M 

= At, x pi,, c eiu(n’+nN)Ate 
n “‘E-M 

= Ati 2 pi,nHI(w) e’“‘“, 
n 



SUB-CYCLING IN PARTICLE SIMULATION 233 

where 

(3) 

can be removed from the sum, leaving p,(o). Thus 

ikEe(w) -PeCw) = Hl(o) Pi(w)* (4) 

H,(w) has periodicity 27r/At,. Over such an interval, pi(O) repeats N times. Thus 
even if pi,n varies only with low frequencies -@r/At,, the electrons perceive the low 
frequencies, plus harmonics of 2n/Ati. This is because pi as seen by the electrons is 
piecewise constant with a jump every iV steps. 

The electric field used to integrate the ions is given by the transformed Gauss’ law 
with source Eq. (1) 

! 

.+x/*1, do 
= 

-n,Al, ,nP,(w) H,(o) e- 
id, 

9 (5) 

in which we have used the analog of (2b) for the electrons, and introduced the 
transfer function HZ(m) for the filter {a,,), 

H*(0) = 5 an,e-iw”‘Arq 
n’= -* 

We break the interval of integration in (5) into N subintervals of length 2n/At, 

ikEi,, -Pi,” = 

! 
. dw 

= 27Ce -iwt"~P.(w,) WqJ, 

where co, - w - 2nq/Ati; and we have used the periodicity of the factor 
exp(-io,t,) = exp(-id,) to remove it outside the sum. Comparing (7) to (2b), we 
recognize 
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The linear charge density response to the electric field can be written in general as 

Pi(W) = -ik&(w) Ei(“)9 (9) 

and similarly for the electrons. Evaluation of the susceptibility x, including the effect 
of finite At, is given elsewhere [6]; the expressions we use are given in the next 
section. From (4) and (S), 

-(l + XL’tW>>PetW) = HICw)Pi(w> (10) 

We use (lo), with w replaced by wq, to express pe in (11). Then we use the 
periodicity of pi to remove it from the sum. Cancelling pi yields the dispersion 
relation 

+,” fw,) H,(w,) 1 +x;‘(k, w) = 5 
q=“-M 1 + x, ‘(k. oq) . 

As a check, we note that, for N = 1, H, H, = 1 and we have (1 + x; ‘) = 
(1 + x; ‘) - ‘, or 1 + xe + xi = 0, the correct result. Also the coupling between electron 
modes implies by the sum (N > 1) is entirely due to the ions, for when the ion plasma 
frequency oPi + 0, the left-hand side of (12) becomes infinite. The solutions of (12) 
are then simply the zeroes of each denominator 1 + ~;‘(k, oq), i.e., of the dispersion 
relation for electrons only, replicated N times. We shall discuss the meaning of this 
multiplicity of roots, and then present numerical and approximate analytic solutions 
for the unstable cases w,,Ati N x and 27~ 

4. SOLUTIONS OF WARM PLASMA DISPERSION RELATION 

We now find approximate roots analytically and accurate numerical solutions of 
(10) and (11) for later comparison with simulations. We assume cold ions, for which 

Cwpi Ari)z 

Xi = (2 sin(oAti/2))2 ’ 

and warm electrons, for which [6] 

x&, w) = $1 dvk g+ cot(w - kv) +. (14) 



SUB-CYCLING IN PARTICLE SIMULATION 235 

In fact, we mostly used the approximation of xe which retains only second-order finite 
time step correction given in [6], i.e., 

Xe =x0 - -ik (qJfeK (15) 

where x0 is the continuous result which can be expressed in terms of the Z’ derivative 
of the Fried-Conte function in the case considered here of a plasma in ther- 
modynamic equilibrium. We checked that in most cases the difference between this 
second-order expression and the exact solution was negligible. Effects due to a finite 
spatial grid are neglected. The results presented below are obtained in the case 
a,, = l/N, for which H, = H,. 

4.1 Interpretation of the Roots of the Dispersion Relation 

The solution w is the frequence as the ions see it, with their larger time step. 
Electron frequencies w f 2z/Ati, LC) f 41r/Ati,..., all appear the same as o to the ions, 
and all are roots of the dispersion relation if w is a root. This is manifest in the 
periodicity properties of Xe.i in Eqs. (13) and (14). 

To see which frequencies are important to each species, consider x,(o - 2nq/Ati) 
terms contributing significantly to the dispersion relation in each particular case. 

With wpeAti N rr, consider first the root cc) near Ir/Ati, then ePiw’n N ePinn = (-1)“. 
Thus the ions feel an alternating odd-even dependence on time step. The electron 
terms that matter are those with x,(w) and x,(w - 27r/Ati), which are near +mpe and 
+cpe. Thus the electrons contribution is two oppositely directed Langmuir waves. 

What happens in this same case if one chooses instead the root w of the dispersion 
relation near Sri/At,? For the ions, the time dependence is eeiWtn N 
exp(-i[5z/Ati] tit,) = (-I)“, the same as before. In the dispersion relation, the 
important electron terms are now q equals 2 and 3, so the frequencies o, in the 
relevant xe terms are o2 r n/At, N mpe and Ok 21 -z/Ati N -mpe, also as before. 
Therefore, this root corresponds to the same mode of this time-sampled system. 

With o,,At, N 2a, take for convenience the root w near zero, so that the ions 
experience slowly varying fields. The important electron terms in the dispersion 
relation are those with x,(w), x,(wi), and x,(w-i), i.e., electrons are responding to 
three frequencies: w 6 w,,~ and o* i = w f 21r/Ati li &mpe. Thus the electrons 
contribute in their usual way to the ion acoustic perturbation, which is coupled by the 
numerical method to two oppositely directed Langmuir waves. 

4.2 Study of Dispersion Relation Around Ope Ati = 71 

TO find the maximum growth rate, we assume cold electrons and adjust w,,Ati. 
Let w be near ape = z/Ati, and define 
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which is much smaller than At;‘. Then w, = Q - n/Ati. For these two frequencies, 

~;‘(a f n/Ati) = -[sin(lr/2N)(2/wP,At,)12 ‘F (Q/w,,) cos(7r/2N), 

H,(Q f (;TCldti)) = (l/N sin(z/2N)) + O(.ClAt,); (16) 

and 

x;‘(Q * (n/At,)) = (2/wpiAti)* + O( 1) (17) 

is much larger than one. Keeping only dominant terms, the dispersion relation 
becomes 

where 

-(2/cu,,Ati)* = ZH;A/(A 2 - 4R*/w;,), (18) 

A = 1 - [(2/o,,At,) sin(n/2N)]‘. 

The maximum growth rate is given by 

lm(w/ope> = (mpi/Wpe)2/2 (19) 

and it occurs when A = -~~,/a&. Rewriting this and remembering that mpe in A 
should more accurately be the Bohm-Gross frequency, we have 

(CO& + 3k2V~)(At~/7t2) = ((~N/K) sin 42N)2/( 1 + O~i/cO~,), (20) 

where the right-hand side is slightly less than unity. In summary, the largest growth 
rate is found for wpeAfi slightly less than rr, and is smaller than wP, by the factor 
mJmi * 

In Figs. 2a and 2b, the growth rate of the instability is shown as a function of 
mpeAti for two values of k&, and a mass ratio mi/m, = 100. The value of k& = 0.015 
was chosen because, for such a small value, the cold plasma analysis should apply 
while the value kd, = 0.0982 corresponds to the simulations discussed in Section 5. 

FIG. 2. (a) Growth rate of the numerical instability for w,,At, in the vicinity of R as a function of 
the mass ratio for U, = 0.015 and At,/At, = 7. The approximate analytical solution (. . .), and the 
numerical solution (-) of the exact dispersion relation; (a) is for a mass ratio mi/m, = 100, (b) for 
m,/m, = 200, and (c) for m,/m, = 400. 
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FIG. 2. (b) Growth rate in the vicinity of w,,dt, = n for q/me = 100, kL, = 0.0982 and 
AtJAt, = 7. The approximate analytical solution (.. .) and the numerical solution (-). 

Both the approximate analytical solution and the numerical solution are plotted on 
the same graph. It is clear that the agreement is very good in the cold plasma case. 
The real part of the frequency is close to mpe as predicted by the theory. The depen- 
dence of the growth rate on the mass ratio is also shown in Fig. 2a. It is easily 
verified that the maximum growth rate and the domain of instability obey the scaling 
given by the theory. 

In Fig. 3, the growth rate is shown as a function of w,,dti for two different values 
of the electron time step. Here again, the agreement with the theory is very good. 

We also checked the dependence of the value of o,,dti corresponding to the 
maximum growth rate as well as the value of this growth rate as a function of kA, for 
two values of the mass ratio. This is illustrated in Figs. 4 and 5; the agreement with 
the approximate solution is good except when M, becomes larger than 0.2, in which 
case Landau damping begins to play a role and finally suppresses the instability. 

4.3 Study of Dispersion Relation around 271 

In this case it is the ion acoustic branch which is destabilized by coupling to two 
Langmuir waves. We take o 2: oPi and o 4 kV, Q At;‘, so that 1 +x;‘(w) = 
1 + k*1: in the q = 0 term. For the Langmuir waves (q = f 1) we assume cc*, s kV, 
(i.e., kV,At, < l), so that 

with A = 1 - ((2/w,,At,) sin n/N)*. 

FIG. 3. Growth rate as a function of w,,At, in the vicinity of 71 for q/me = 100, M, = 0.0982, and 
two different values of AtJAt,; At,/At, = 7 (...) and AtJAt, = 15 (-). 
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FIG. 4. Value of w,,dt, corresponding to the maximum growth rate in the vicinity of A, as a 
function of /CA, for two different values of the mass ratio, m,/m, = 400 (. . .), and q/m, = 100 (-); 
AtJAt, = I. 

Assuming cold ions, xi1 2: -W’/O~i. With H, = H, , the dispersion relation becomes 

co2 k21; w2 24 
2 m 

wpi 1 + k2L; = 5 A2 - 4(02/o;,) * (21) 

For simplicity, we seek a 
growth rate 

root with Iw2 1 > k’Liw$. We then find a maximum 

(the same as for o,,& 2: Z) occuring when 

i.e., when the Bohm-Gross frequency is slightly below 2n/Ati. This estimate of the 
maximum growth rate is relined by numerical solutions of the dispersion relation 
discussed below. 

Notice that the smallness of the growth rate is due to the presence of the zero of 
H,(o) at l 2lr/At,. If instead H,(2n/Ati) > 0, we can expect growth rates as large as 

Im UJ N CO,~(H~)“~. 

FIG. 5. Maximum growth rate in the vicinity of n as a function of M, for two different values of the 
mass ratio, mi/m, = 400 (. . .), and m,/m, = 100 (-); At,/At, = 7. 
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FIG. 6. Growth rate of the numerical instability for o,,dt, in the vicinity of 2n for M, = 0.015, 
AtJAt, = 15, and m,/m, = 100. The numerical solution of the full dispersion relation (-), and the 
approximate analytical solution (...). 

FIG. 7. Same as Fig. 6, but for a mass ratio q/m, = 400. 

This point has been verified in some simulations by changing the values of the 
weights in the calculation of the electric field seen by the ions. 

In Figs. 6 and 7, we compare the solution of the approximate dispersion relation 
(21) and the exact (lo), (11) dispersion relation. The mass ratio is 100 in Fig. 6 and 
400 in Fig. 7. The analytical approximation is much less accurate than for the 
preceeding case, especially for mi/m, = 100, where it gives two branches instead of 
one. 

5. COMPARISON OF ANALYSIS AND CODE RESULTS 

In order to check the preceeding analysis, we modified a standard PIC code to 
implement the algorithm considered. The grid size is Ax = A,, and the number of 
cells is 64 so that the longest wavelength that fits into the system is k,iD = 0.0982. 
Most of the study was made with 8192 electrons and ions. The mass ratio mi/me was 
taken to be either 100 or 400 and the electron time step to be either -0.20;~’ or 
-0.40;~‘. Because it is the most straightforward scheme, we only used the odd N 
algorithm. The results of the simulations agree with the broad features of the theory, 
such as the domain of instability, the value of maximum growth rate, and its depen- 
dence on the mass ratio, but some unexpected modes appear. 
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FIG. 8. Comparison of the theory and results of particle simulation in the vicinity of R. The mass 
ratio is 100, AtJAt, = 7, kA, = 0.0982. The data points of the simulation have been separated into two 
classes: data which tit the theory (o), and points (A) which seem to indicate the existence of another 
branch not predicted by the theory. 

5.1 Simulation around qeAti = r 

In Fig. 8, we show data points obtained with At, 1: 0.44, i.e., with seven electron 
time steps during one ion time step, and a, N l/7. The solid line corresponds to the 
numerical solution of the warm plasma dispersion relation for k&, = 0.0982, while 
the dots correspond to simulation data. We notice that the agreement with the theory 
is good in term of maximum growth rate and of dependence of y with Ati, but we 
found another branch, with similar growth displayed as triangles on the plot, that is 
not predicted by the theory. 

Similar data obtained with At, N 0.2, which corresponds to 15 electron time steps 
during one ion time step, are shown in Fig. 9. The simulation data show that in this 
case there also seems to exist at least one other unstable branch not predicted by the 
theory, having a growth rate and domain of instability comparable to the branch 
predicted by the theory. 

We also made a series of runs with a mass ratio of 400 and found that the only 
unstable mode was the one corresponding to the maximum growth rate predicted by 
the theory. Outside of the value of apeAt, corresponding to this growth, no instability 
was observed. In fact, this is a general result of our simulations; we never observed 
any instability with a growth rate much smaller than 10-3~pe, close to CopeAti = 71. 
This may be an indication that for mass ratio of 900 or over, the instability does not 
exist, probably due to collisional damping. Finally, let us stress that because of the 

FIG. 9. Same as Fig. 8, but for AtJAt, = 15. 
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FIG. 10. Comparison of the theory and results of particle simulation in the vicinity of 2x. The mass 
ratio is 400, AtJAt, = 15, M, = 0.0982. The theoretical result (-), and simulation data points (0). 

smallness of the range of instability around n and of the M, dependence of the value 
of w,,dt, corresponding to the maximum growth rate, we never observed the growth 
of more than one mode at a time. 

5.2 Simulations around upeAti = 271 

The simulations in the vicinity of copeAti = 2~ were carried out using an electron 
time step At, ~0.44, At, = 15At,, a,, = &, and a mass ratio mi/m, of either 100 or 
400. In Figs, 10 and 11 is shown a comparison between the curve obtain by solving 
numerically the dispersion relation (-) and data points obtained from the simulation 
for m,/m, = 400 and mi/m, = 100. The value of the growth rate is in reasonable 
agreement with the theory. We also measured the value of the real part of the 
frequency which yielded w N 8 x ~O-*W~~ for y N yrnax which is not too far from the 
value 5 x lo-* obtained from the theory. In fact, the real and imaginary part of the 
frequency being of the same order of magnitude, their measure is very inaccurate. 
This is especially true in Fig. 10, where m,/m, = 400. Similar data are displayed in 
Fig. 11 for me/m, = 100. Agreement with theory is good in the predicted range of 
instability. Outside of this domain, however, we observed growth which is due to the 
stronger growth rate of the second spatial Fourier mode; when the fields are filtered 
to suppress all but mode 1, the instability is absent as predicted. 

FIG. 11. Same as Fig. 10, but with a mass ratio of 100. The theoretical graph for U,, cz 0.1 (-), 
and for k&, = 0.2 (.. .); and simulation data corresponding to the mode with kl, = 0.1 (0). Note that 
below w,,At, = 5.85, the instability of mode kr3, = 0.1 is driven by the mode kA, = 0.2. 
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6. EFFECT OF NUMERICAL DAMPING ON THE 
INSTABILITY CLOSE ~0 wpedti=7r 

The instability around or& ‘Y 7c is weak and easily stabilized by collisional 
damping for large enough mass ratio. It is tempting to see if the introduction of some 
damping into the electron equation of motion will suppress the instability. Before 
deciding to do so one has to be aware of the following facts: The limitation 
w,,dt, < 7~ is not serious as long as mi/me < 400 because for such values of mass 
ratio, one is limited by truncation error in wPiAti more than by stability. For larger 
mass ratio, there is little to gain in cost of simulation by exceeding the limitation 
upeAti = rz because once the ions are pushed only once in 10 electron steps, their cost 
is already negligible. 

In [6] it was shown that the following scheme introduces a damping rate O(At-‘): 

V n+ 1/2 = v,- Il2 + anAt3 (24 

X IIt1 = x, + v,+ I/2 At + (At2/12)(a, - a,-,), (23) 

where a, is the acceleration computed at time ndt. The corresponding damping rate is 

Im(So/w,) = - &(cooAt)3. (24) 

It is easy to modify this scheme to introduce a variable damping by using an 
arbitrary constant in Eq. (23) instead of A. It becomes [2], 

X nt1 =x, + vn+1/2 At+clAt2(a,-a,-,); 

the damping rate is then given by 

Im(Gw/w,) = -(cl/2)(ooAt)3, 

while the error on the real part of the frequency remains O(At*). 
With this numerical damping, the electron susceptibility becomes [6] 

(25) 

xe = xo - &(q,At)2 + cl exp(iwAt - f k* V,’ At:). P-3) 

Numerical solutions of the resulting dispersion relation agree with the preceeding 
estimate (25) for upeAti Y II. Close to 2n, the damping is somewhat smaller than this 
approximate value, probably because it affects the Langmuir waves but not the ion 
acoustic waves (as can be seen in Eq. (26) with wdt, 6 1). 

This scheme is implemented in the electron pusher. In order to distinguish 
numerical damping from collisional damping, we use the smaller mass ratio 
mi/me = 100 with At, N 0.4 and Ati N rt. For c, = l/24 and c, = l/12, we observed a 
reduction of the maximum growth rate corresponding to the damping given by (25) 
and a slight shift of the domain of instability which is reduced simultaneously. 
Agreement with the theory was found to be good. With a mass ratio of 400 and 
ci = l/24, for which the damping rate is larger than the maximum growth of the 
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instability, no instability was observed. Similar simulations around 2n demonstrate, 
in agreement with the theory, that the stabilizing effect of c, is somewhat smaller than 
at mpedti = rc but still exists. 

It must also be emphasized that the stabilization is obtained at the expense of a 
cooling of the electrons. This cooling is related to the value of c, , and for large values 
Of mi/%, the amount of damping necessary to stabilize the code may be small 
enough for the cooling to be negligible. Theoretical analysis [2], supports the use of 
third-order damping as used here to minimize the unwanted cooling, as opposed to 
simpler, first-order schemes. 

7. FUTURE DIRECTIONS 

In order to make further gains in speed, the time spent moving electrons must be 
reduced. Increasing At, is a limited option, as the explicit electron time integration 
behaves poorly as At, is increased, even well below the threshold of numerical 
instability [7]. Implicit schemes seek to remove this limitation, but their application 
is restricted by the electron transit-time limitation, kvdt 5 1 [ 1, 21. Perhaps a 
combination of the two approaches would be fruitful. We propose the following as an 
example: 

A cycle begins with electrons at time ndt, - MA&, and ions at ndt, , advanced 
explicitly using E,-, . A prediction is made for E, using the principles of an implicit 
field algorithm [ 1, 21 with pi,” and electron information at time ndt, - MAt,. 

This E, permits integration of the electrons forward to time ndt, + MAt,, 
accumulating along the way a filtered electron charge density to form pe,“. If this pe,, 

and Pi,n are sufficiently compatible with the predicted E,, then E, is used to advance 
the ions to time (n + 1) Ati by an explicit scheme to complete the cycle. 

What are the advantage relative to the simpler subcycling described in this paper? 
In addition to the possibility of using fewer electron steps, as noted earlier, the 
computation cost per time step may be lower. Because the same electric field E, is 
used for all the electron steps, one may integrating each electron all N steps at once, 
rather than having to access the entire electron particle list N times. In large 
simulations, the particle data commonly reside in disk storage, whose access rates 
result in considerable overhead on recent computers with very fast central processors. 
Perhaps the number of electrons needed could be reduced, as was found with orbit 
averaged codes [8], whose implicit version [9] is related to the algorithm proposed 
here. 
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